Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/630074
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQinglin Tianen_US
dc.contributor.authorZoran Salcicen_US
dc.contributor.authorKevin I-Kai Wangen_US
dc.contributor.authorYun Panen_US
dc.date.accessioned2020-05-20T09:45:33Z-
dc.date.available2020-05-20T09:45:33Z-
dc.date.issued2016en_US
dc.identifier.issn1530-437Xen_US
dc.identifier.issn1558-1748en_US
dc.identifier.other10.1109/JSEN.2015.2510364en_US
dc.identifier.urihttp://localhost/handle/Hannan/164716en_US
dc.identifier.urihttp://localhost/handle/Hannan/630074-
dc.description.abstractThis paper proposes an approach for pedestrian tracking using dead reckoning enhanced with a mode detection using a standard smartphone. The mode represents a specific state of carrying device, and it is automatically detected while a person is walking. This paper presents a new approach, which extends and enhances previous methods by identifying in real-time three typical modes of carrying the device and using the identified mode to enhance tracking accuracy. The way of carrying the device in all modes is unconstrained to offer reliable person-independent tracking. Based on the identification of modes, a lightweight step-based tracking algorithm is developed with a novel step length estimation model. The tracking system is implemented on a commercial off-the-shelf smartphone equipped with a built-in inertial measurement unit with 3-D accelerometer and gyroscope. It achieves real-time tracking and localization performance with an average position accuracy of 98.91%.en_US
dc.publisherIEEEen_US
dc.relation.haspart7360882.pdfen_US
dc.subjectsmartphone|mode-awareness|realtime tracking|pedestrian dead reckoning|light-weight positioning algorithmen_US
dc.titleA Multi-Mode Dead Reckoning System for Pedestrian Tracking Using Smartphonesen_US
dc.typeArticleen_US
dc.journal.volume16en_US
dc.journal.issue7en_US
dc.journal.titleIEEE Sensors Journalen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7360882.pdf4.49 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQinglin Tianen_US
dc.contributor.authorZoran Salcicen_US
dc.contributor.authorKevin I-Kai Wangen_US
dc.contributor.authorYun Panen_US
dc.date.accessioned2020-05-20T09:45:33Z-
dc.date.available2020-05-20T09:45:33Z-
dc.date.issued2016en_US
dc.identifier.issn1530-437Xen_US
dc.identifier.issn1558-1748en_US
dc.identifier.other10.1109/JSEN.2015.2510364en_US
dc.identifier.urihttp://localhost/handle/Hannan/164716en_US
dc.identifier.urihttp://localhost/handle/Hannan/630074-
dc.description.abstractThis paper proposes an approach for pedestrian tracking using dead reckoning enhanced with a mode detection using a standard smartphone. The mode represents a specific state of carrying device, and it is automatically detected while a person is walking. This paper presents a new approach, which extends and enhances previous methods by identifying in real-time three typical modes of carrying the device and using the identified mode to enhance tracking accuracy. The way of carrying the device in all modes is unconstrained to offer reliable person-independent tracking. Based on the identification of modes, a lightweight step-based tracking algorithm is developed with a novel step length estimation model. The tracking system is implemented on a commercial off-the-shelf smartphone equipped with a built-in inertial measurement unit with 3-D accelerometer and gyroscope. It achieves real-time tracking and localization performance with an average position accuracy of 98.91%.en_US
dc.publisherIEEEen_US
dc.relation.haspart7360882.pdfen_US
dc.subjectsmartphone|mode-awareness|realtime tracking|pedestrian dead reckoning|light-weight positioning algorithmen_US
dc.titleA Multi-Mode Dead Reckoning System for Pedestrian Tracking Using Smartphonesen_US
dc.typeArticleen_US
dc.journal.volume16en_US
dc.journal.issue7en_US
dc.journal.titleIEEE Sensors Journalen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7360882.pdf4.49 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQinglin Tianen_US
dc.contributor.authorZoran Salcicen_US
dc.contributor.authorKevin I-Kai Wangen_US
dc.contributor.authorYun Panen_US
dc.date.accessioned2020-05-20T09:45:33Z-
dc.date.available2020-05-20T09:45:33Z-
dc.date.issued2016en_US
dc.identifier.issn1530-437Xen_US
dc.identifier.issn1558-1748en_US
dc.identifier.other10.1109/JSEN.2015.2510364en_US
dc.identifier.urihttp://localhost/handle/Hannan/164716en_US
dc.identifier.urihttp://localhost/handle/Hannan/630074-
dc.description.abstractThis paper proposes an approach for pedestrian tracking using dead reckoning enhanced with a mode detection using a standard smartphone. The mode represents a specific state of carrying device, and it is automatically detected while a person is walking. This paper presents a new approach, which extends and enhances previous methods by identifying in real-time three typical modes of carrying the device and using the identified mode to enhance tracking accuracy. The way of carrying the device in all modes is unconstrained to offer reliable person-independent tracking. Based on the identification of modes, a lightweight step-based tracking algorithm is developed with a novel step length estimation model. The tracking system is implemented on a commercial off-the-shelf smartphone equipped with a built-in inertial measurement unit with 3-D accelerometer and gyroscope. It achieves real-time tracking and localization performance with an average position accuracy of 98.91%.en_US
dc.publisherIEEEen_US
dc.relation.haspart7360882.pdfen_US
dc.subjectsmartphone|mode-awareness|realtime tracking|pedestrian dead reckoning|light-weight positioning algorithmen_US
dc.titleA Multi-Mode Dead Reckoning System for Pedestrian Tracking Using Smartphonesen_US
dc.typeArticleen_US
dc.journal.volume16en_US
dc.journal.issue7en_US
dc.journal.titleIEEE Sensors Journalen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7360882.pdf4.49 MBAdobe PDFThumbnail
Preview File