Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/606974
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPo-Kuan Shenen_US
dc.contributor.authorAmir Hosseinien_US
dc.contributor.authorXiaochuan Xuen_US
dc.contributor.authorYongqiang Heien_US
dc.contributor.authorZeyu Panen_US
dc.contributor.authorRay T. Chenen_US
dc.date.accessioned2020-05-20T09:03:48Z-
dc.date.available2020-05-20T09:03:48Z-
dc.date.issued2016en_US
dc.identifier.issn0733-8724en_US
dc.identifier.issn1558-2213en_US
dc.identifier.other10.1109/JLT.2016.2527721en_US
dc.identifier.urihttp://localhost/handle/Hannan/147834en_US
dc.identifier.urihttp://localhost/handle/Hannan/606974-
dc.description.abstractWe propose to apply the multiple-input multiple-output (MIMO) from wireless communication to high density on-chip optical interconnect. MIMO makes it possible to reduce the waveguide pitch to subwavelength range and uses the crosstalk to improve system performance. The proposed N×N on-chip MIMO system consists of transmitter, high-density waveguides, homodyne coherent receivers, and electrical signal processing components. As an example, a 10×10 MIMO system with waveguide spacing of 250 nm is simulated. The possibility of data transmission at 10 Gb/s/channel from high-density waveguide array is numerically investigated. The minimum input optical power for the BER of 10-12 can reach -18.1 dBm. The BER is better than 10-12 when there is a phase shift of 73.5°. Compared to the conventional parallel waveguides with 2-μm pitch, the bandwidth density can be enhanced from 5 to 13.33 Gbit/μm/s at 10 Gb/s by using the MIMO techniques.en_US
dc.publisherIEEEen_US
dc.relation.haspart7403844.pdfen_US
dc.subjectOptical waveguides|optical interconnections|silicon photonicsen_US
dc.titleMultiple-Input Multiple-Output Enabled Large Bandwidth Density On-Chip Optical Interconnecten_US
dc.typeArticleen_US
dc.journal.volume34en_US
dc.journal.issue12en_US
dc.journal.titleJournal of Lightwave Technologyen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7403844.pdf547.71 kBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPo-Kuan Shenen_US
dc.contributor.authorAmir Hosseinien_US
dc.contributor.authorXiaochuan Xuen_US
dc.contributor.authorYongqiang Heien_US
dc.contributor.authorZeyu Panen_US
dc.contributor.authorRay T. Chenen_US
dc.date.accessioned2020-05-20T09:03:48Z-
dc.date.available2020-05-20T09:03:48Z-
dc.date.issued2016en_US
dc.identifier.issn0733-8724en_US
dc.identifier.issn1558-2213en_US
dc.identifier.other10.1109/JLT.2016.2527721en_US
dc.identifier.urihttp://localhost/handle/Hannan/147834en_US
dc.identifier.urihttp://localhost/handle/Hannan/606974-
dc.description.abstractWe propose to apply the multiple-input multiple-output (MIMO) from wireless communication to high density on-chip optical interconnect. MIMO makes it possible to reduce the waveguide pitch to subwavelength range and uses the crosstalk to improve system performance. The proposed N×N on-chip MIMO system consists of transmitter, high-density waveguides, homodyne coherent receivers, and electrical signal processing components. As an example, a 10×10 MIMO system with waveguide spacing of 250 nm is simulated. The possibility of data transmission at 10 Gb/s/channel from high-density waveguide array is numerically investigated. The minimum input optical power for the BER of 10-12 can reach -18.1 dBm. The BER is better than 10-12 when there is a phase shift of 73.5°. Compared to the conventional parallel waveguides with 2-μm pitch, the bandwidth density can be enhanced from 5 to 13.33 Gbit/μm/s at 10 Gb/s by using the MIMO techniques.en_US
dc.publisherIEEEen_US
dc.relation.haspart7403844.pdfen_US
dc.subjectOptical waveguides|optical interconnections|silicon photonicsen_US
dc.titleMultiple-Input Multiple-Output Enabled Large Bandwidth Density On-Chip Optical Interconnecten_US
dc.typeArticleen_US
dc.journal.volume34en_US
dc.journal.issue12en_US
dc.journal.titleJournal of Lightwave Technologyen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7403844.pdf547.71 kBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPo-Kuan Shenen_US
dc.contributor.authorAmir Hosseinien_US
dc.contributor.authorXiaochuan Xuen_US
dc.contributor.authorYongqiang Heien_US
dc.contributor.authorZeyu Panen_US
dc.contributor.authorRay T. Chenen_US
dc.date.accessioned2020-05-20T09:03:48Z-
dc.date.available2020-05-20T09:03:48Z-
dc.date.issued2016en_US
dc.identifier.issn0733-8724en_US
dc.identifier.issn1558-2213en_US
dc.identifier.other10.1109/JLT.2016.2527721en_US
dc.identifier.urihttp://localhost/handle/Hannan/147834en_US
dc.identifier.urihttp://localhost/handle/Hannan/606974-
dc.description.abstractWe propose to apply the multiple-input multiple-output (MIMO) from wireless communication to high density on-chip optical interconnect. MIMO makes it possible to reduce the waveguide pitch to subwavelength range and uses the crosstalk to improve system performance. The proposed N×N on-chip MIMO system consists of transmitter, high-density waveguides, homodyne coherent receivers, and electrical signal processing components. As an example, a 10×10 MIMO system with waveguide spacing of 250 nm is simulated. The possibility of data transmission at 10 Gb/s/channel from high-density waveguide array is numerically investigated. The minimum input optical power for the BER of 10-12 can reach -18.1 dBm. The BER is better than 10-12 when there is a phase shift of 73.5°. Compared to the conventional parallel waveguides with 2-μm pitch, the bandwidth density can be enhanced from 5 to 13.33 Gbit/μm/s at 10 Gb/s by using the MIMO techniques.en_US
dc.publisherIEEEen_US
dc.relation.haspart7403844.pdfen_US
dc.subjectOptical waveguides|optical interconnections|silicon photonicsen_US
dc.titleMultiple-Input Multiple-Output Enabled Large Bandwidth Density On-Chip Optical Interconnecten_US
dc.typeArticleen_US
dc.journal.volume34en_US
dc.journal.issue12en_US
dc.journal.titleJournal of Lightwave Technologyen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7403844.pdf547.71 kBAdobe PDFThumbnail
Preview File