Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/605111
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWenxiang Jiaoen_US
dc.contributor.authorGuanghui Wangen_US
dc.contributor.authorZhoufeng Yingen_US
dc.contributor.authorZhiwen Kangen_US
dc.contributor.authorTianyu Sunen_US
dc.contributor.authorNingmu Zouen_US
dc.contributor.authorHo-pui Hoen_US
dc.contributor.authorXuping Zhangen_US
dc.date.accessioned2020-05-20T09:01:22Z-
dc.date.available2020-05-20T09:01:22Z-
dc.date.issued2016en_US
dc.identifier.issn1943-0655en_US
dc.identifier.other10.1109/JPHOT.2016.2570017en_US
dc.identifier.urihttp://localhost/handle/Hannan/155278en_US
dc.identifier.urihttp://localhost/handle/Hannan/605111-
dc.descriptionen_US
dc.description.abstractWe demonstrate a silicon-based wavelength-division multiplexing (WDM) tree splitter for optofluidic switching of nanoparticles in a lab-on-a-chip or nanofluidic system. The gradient force and scattering force induced by the evanescent field can, respectively, lead to trapping and transportation of colloidal polystyrene (PS) spheres directly above the waveguide. Guiding of PS into any designated branch within a cascaded tree splitter is achieved by switching of the excitation wavelength. As compared to that based on microrings, an optimized design of the reported tree splitter approach offers a number of advantages in terms of device compactness, wavelength tolerance, response speed, and trap stability, while maintaining the inherent low-loss and low-power performance features of WDM splitters. A network of such splitters can readily lead to a platform for high-throughput and large-scale particle manipulation in nanofluidic systems.en_US
dc.publisherIEEEen_US
dc.relation.haspart7470545.pdfen_US
dc.subjectNanofluidics|wavelength division multiplexing (WDM)|Optical trapping|Silicon photonicsen_US
dc.titleOptofluidic Switching of Nanoparticles Based on a WDM Tree Splitteren_US
dc.typeArticleen_US
dc.journal.volume8en_US
dc.journal.issue3en_US
dc.journal.titleIEEE Photonics Journalen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7470545.pdf1.27 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWenxiang Jiaoen_US
dc.contributor.authorGuanghui Wangen_US
dc.contributor.authorZhoufeng Yingen_US
dc.contributor.authorZhiwen Kangen_US
dc.contributor.authorTianyu Sunen_US
dc.contributor.authorNingmu Zouen_US
dc.contributor.authorHo-pui Hoen_US
dc.contributor.authorXuping Zhangen_US
dc.date.accessioned2020-05-20T09:01:22Z-
dc.date.available2020-05-20T09:01:22Z-
dc.date.issued2016en_US
dc.identifier.issn1943-0655en_US
dc.identifier.other10.1109/JPHOT.2016.2570017en_US
dc.identifier.urihttp://localhost/handle/Hannan/155278en_US
dc.identifier.urihttp://localhost/handle/Hannan/605111-
dc.descriptionen_US
dc.description.abstractWe demonstrate a silicon-based wavelength-division multiplexing (WDM) tree splitter for optofluidic switching of nanoparticles in a lab-on-a-chip or nanofluidic system. The gradient force and scattering force induced by the evanescent field can, respectively, lead to trapping and transportation of colloidal polystyrene (PS) spheres directly above the waveguide. Guiding of PS into any designated branch within a cascaded tree splitter is achieved by switching of the excitation wavelength. As compared to that based on microrings, an optimized design of the reported tree splitter approach offers a number of advantages in terms of device compactness, wavelength tolerance, response speed, and trap stability, while maintaining the inherent low-loss and low-power performance features of WDM splitters. A network of such splitters can readily lead to a platform for high-throughput and large-scale particle manipulation in nanofluidic systems.en_US
dc.publisherIEEEen_US
dc.relation.haspart7470545.pdfen_US
dc.subjectNanofluidics|wavelength division multiplexing (WDM)|Optical trapping|Silicon photonicsen_US
dc.titleOptofluidic Switching of Nanoparticles Based on a WDM Tree Splitteren_US
dc.typeArticleen_US
dc.journal.volume8en_US
dc.journal.issue3en_US
dc.journal.titleIEEE Photonics Journalen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7470545.pdf1.27 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWenxiang Jiaoen_US
dc.contributor.authorGuanghui Wangen_US
dc.contributor.authorZhoufeng Yingen_US
dc.contributor.authorZhiwen Kangen_US
dc.contributor.authorTianyu Sunen_US
dc.contributor.authorNingmu Zouen_US
dc.contributor.authorHo-pui Hoen_US
dc.contributor.authorXuping Zhangen_US
dc.date.accessioned2020-05-20T09:01:22Z-
dc.date.available2020-05-20T09:01:22Z-
dc.date.issued2016en_US
dc.identifier.issn1943-0655en_US
dc.identifier.other10.1109/JPHOT.2016.2570017en_US
dc.identifier.urihttp://localhost/handle/Hannan/155278en_US
dc.identifier.urihttp://localhost/handle/Hannan/605111-
dc.descriptionen_US
dc.description.abstractWe demonstrate a silicon-based wavelength-division multiplexing (WDM) tree splitter for optofluidic switching of nanoparticles in a lab-on-a-chip or nanofluidic system. The gradient force and scattering force induced by the evanescent field can, respectively, lead to trapping and transportation of colloidal polystyrene (PS) spheres directly above the waveguide. Guiding of PS into any designated branch within a cascaded tree splitter is achieved by switching of the excitation wavelength. As compared to that based on microrings, an optimized design of the reported tree splitter approach offers a number of advantages in terms of device compactness, wavelength tolerance, response speed, and trap stability, while maintaining the inherent low-loss and low-power performance features of WDM splitters. A network of such splitters can readily lead to a platform for high-throughput and large-scale particle manipulation in nanofluidic systems.en_US
dc.publisherIEEEen_US
dc.relation.haspart7470545.pdfen_US
dc.subjectNanofluidics|wavelength division multiplexing (WDM)|Optical trapping|Silicon photonicsen_US
dc.titleOptofluidic Switching of Nanoparticles Based on a WDM Tree Splitteren_US
dc.typeArticleen_US
dc.journal.volume8en_US
dc.journal.issue3en_US
dc.journal.titleIEEE Photonics Journalen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7470545.pdf1.27 MBAdobe PDFThumbnail
Preview File