Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/235795
Title: Fully Deep Blind Image Quality Predictor
Authors: Jongyoo Kim;Sanghoon Lee
Year: 2017
Publisher: IEEE
Abstract: In general, owing to the benefits obtained from original information, full-reference image quality assessment (FR-IQA) achieves relatively higher prediction accuracy than no-reference image quality assessment (NR-IQA). By fully utilizing reference images, conventional FR-IQA methods have been investigated to produce objective scores that are close to subjective scores. In contrast, NR-IQA does not consider reference images; thus, its performance is inferior to that of FR-IQA. To alleviate this accuracy discrepancy between FR-IQA and NR-IQA methods, we propose a blind image evaluator based on a convolutional neural network (BIECON). To imitate FR-IQA behavior, we adopt the strong representation power of a deep convolutional neural network to generate a local quality map, similar to FR-IQA. To obtain the best results from the deep neural network, replacing hand-crafted features with automatically learned features is necessary. To apply the deep model to the NR-IQA framework, three critical problems must be resolved: 1) lack of training data; 2) absence of local ground truth targets; and 3) different purposes of feature learning. BIECON follows the FR-IQA behavior using the local quality maps as intermediate targets for conventional neural networks, which leads to NR-IQA prediction accuracy that is comparable with that of state-of-the-art FR-IQA methods.
URI: http://localhost/handle/Hannan/235795
volume: 11
issue: 1
More Information: 206,
220
Appears in Collections:2017

Files in This Item:
File SizeFormat 
7782419.pdf1.38 MBAdobe PDF
Title: Fully Deep Blind Image Quality Predictor
Authors: Jongyoo Kim;Sanghoon Lee
Year: 2017
Publisher: IEEE
Abstract: In general, owing to the benefits obtained from original information, full-reference image quality assessment (FR-IQA) achieves relatively higher prediction accuracy than no-reference image quality assessment (NR-IQA). By fully utilizing reference images, conventional FR-IQA methods have been investigated to produce objective scores that are close to subjective scores. In contrast, NR-IQA does not consider reference images; thus, its performance is inferior to that of FR-IQA. To alleviate this accuracy discrepancy between FR-IQA and NR-IQA methods, we propose a blind image evaluator based on a convolutional neural network (BIECON). To imitate FR-IQA behavior, we adopt the strong representation power of a deep convolutional neural network to generate a local quality map, similar to FR-IQA. To obtain the best results from the deep neural network, replacing hand-crafted features with automatically learned features is necessary. To apply the deep model to the NR-IQA framework, three critical problems must be resolved: 1) lack of training data; 2) absence of local ground truth targets; and 3) different purposes of feature learning. BIECON follows the FR-IQA behavior using the local quality maps as intermediate targets for conventional neural networks, which leads to NR-IQA prediction accuracy that is comparable with that of state-of-the-art FR-IQA methods.
URI: http://localhost/handle/Hannan/235795
volume: 11
issue: 1
More Information: 206,
220
Appears in Collections:2017

Files in This Item:
File SizeFormat 
7782419.pdf1.38 MBAdobe PDF
Title: Fully Deep Blind Image Quality Predictor
Authors: Jongyoo Kim;Sanghoon Lee
Year: 2017
Publisher: IEEE
Abstract: In general, owing to the benefits obtained from original information, full-reference image quality assessment (FR-IQA) achieves relatively higher prediction accuracy than no-reference image quality assessment (NR-IQA). By fully utilizing reference images, conventional FR-IQA methods have been investigated to produce objective scores that are close to subjective scores. In contrast, NR-IQA does not consider reference images; thus, its performance is inferior to that of FR-IQA. To alleviate this accuracy discrepancy between FR-IQA and NR-IQA methods, we propose a blind image evaluator based on a convolutional neural network (BIECON). To imitate FR-IQA behavior, we adopt the strong representation power of a deep convolutional neural network to generate a local quality map, similar to FR-IQA. To obtain the best results from the deep neural network, replacing hand-crafted features with automatically learned features is necessary. To apply the deep model to the NR-IQA framework, three critical problems must be resolved: 1) lack of training data; 2) absence of local ground truth targets; and 3) different purposes of feature learning. BIECON follows the FR-IQA behavior using the local quality maps as intermediate targets for conventional neural networks, which leads to NR-IQA prediction accuracy that is comparable with that of state-of-the-art FR-IQA methods.
URI: http://localhost/handle/Hannan/235795
volume: 11
issue: 1
More Information: 206,
220
Appears in Collections:2017

Files in This Item:
File SizeFormat 
7782419.pdf1.38 MBAdobe PDF