Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/210830
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhida Qinen_US
dc.contributor.authorXiaoying Ganen_US
dc.contributor.authorJingchao Wangen_US
dc.contributor.authorLuoyi Fuen_US
dc.contributor.authorXinbing Wangen_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-04-06T08:02:00Z-
dc.date.available2020-04-06T08:02:00Z-
dc.date.issued2017en_US
dc.identifier.other10.1109/TCOMM.2017.2737982en_US
dc.identifier.urihttp://localhost/handle/Hannan/210830-
dc.description.abstractThe widespread of smart phones has brought new social-aware features to wireless networks. Users prefer to forward traffic to their social contacts in social-aware networks, which is highly different from the traditional uniform traffic pattern. To this end, we analyze a social-aware wireless network, which is modeled by the social contacts between nodes, and explore its impact on network throughput capacity. We present that it can refine social contacts, thus improving the network capacity. Moreover, directional antennas are applied to further enhance the capacity performance, which can reduce the interference brought by other simultaneous communications. We derive the throughput capacity for social-aware networks with single-beam and multi-beam directional antenna, respectively. For single-beam directional antenna, we prove that when wireless networks are dominated by traffics of short-distance social contact, the throughput capacity can be promoted from order of <inline-formula> <tex-math notation="LaTeX">(\Theta ({1}/{\theta ^{2}}n\,\text {log}\,n)^{1/2}) </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">\Theta ({1}/{\theta ^{2} \text {log}\,n}) </tex-math></inline-formula>. In addition, when the beamwidth <inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula> is at order of <inline-formula> <tex-math notation="LaTeX">\Omega ({1}/{({\log {n}})^{1/2}}) </tex-math></inline-formula>, the throughput capacity is a constant. Thus, the wireless network is scalable. For multi-beam antennas, we prove that when sidelobe gain <inline-formula> <tex-math notation="LaTeX">G_{s} </tex-math></inline-formula> is at order of <inline-formula> <tex-math notation="LaTeX">o(G_{m}) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">G_{m} </tex-math></inline-formula> is main lobe gain, compared with the single-beam case, the network capacity can achieve the order of <inline-formula> <tex-math notation="LaTeX">\Theta ({1}/{\theta ^{2}\text {log}\,n}) </tex-math></inline-formula>.en_US
dc.format.extent4831,en_US
dc.format.extent4844en_US
dc.publisherIEEEen_US
dc.relation.haspart8007232.pdfen_US
dc.titleCapacity of Social-Aware Wireless Networks With Directional Antennasen_US
dc.typeArticleen_US
dc.journal.volume65en_US
dc.journal.issue11en_US
Appears in Collections:2017

Files in This Item:
File SizeFormat 
8007232.pdf1.35 MBAdobe PDF
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhida Qinen_US
dc.contributor.authorXiaoying Ganen_US
dc.contributor.authorJingchao Wangen_US
dc.contributor.authorLuoyi Fuen_US
dc.contributor.authorXinbing Wangen_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-04-06T08:02:00Z-
dc.date.available2020-04-06T08:02:00Z-
dc.date.issued2017en_US
dc.identifier.other10.1109/TCOMM.2017.2737982en_US
dc.identifier.urihttp://localhost/handle/Hannan/210830-
dc.description.abstractThe widespread of smart phones has brought new social-aware features to wireless networks. Users prefer to forward traffic to their social contacts in social-aware networks, which is highly different from the traditional uniform traffic pattern. To this end, we analyze a social-aware wireless network, which is modeled by the social contacts between nodes, and explore its impact on network throughput capacity. We present that it can refine social contacts, thus improving the network capacity. Moreover, directional antennas are applied to further enhance the capacity performance, which can reduce the interference brought by other simultaneous communications. We derive the throughput capacity for social-aware networks with single-beam and multi-beam directional antenna, respectively. For single-beam directional antenna, we prove that when wireless networks are dominated by traffics of short-distance social contact, the throughput capacity can be promoted from order of <inline-formula> <tex-math notation="LaTeX">(\Theta ({1}/{\theta ^{2}}n\,\text {log}\,n)^{1/2}) </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">\Theta ({1}/{\theta ^{2} \text {log}\,n}) </tex-math></inline-formula>. In addition, when the beamwidth <inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula> is at order of <inline-formula> <tex-math notation="LaTeX">\Omega ({1}/{({\log {n}})^{1/2}}) </tex-math></inline-formula>, the throughput capacity is a constant. Thus, the wireless network is scalable. For multi-beam antennas, we prove that when sidelobe gain <inline-formula> <tex-math notation="LaTeX">G_{s} </tex-math></inline-formula> is at order of <inline-formula> <tex-math notation="LaTeX">o(G_{m}) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">G_{m} </tex-math></inline-formula> is main lobe gain, compared with the single-beam case, the network capacity can achieve the order of <inline-formula> <tex-math notation="LaTeX">\Theta ({1}/{\theta ^{2}\text {log}\,n}) </tex-math></inline-formula>.en_US
dc.format.extent4831,en_US
dc.format.extent4844en_US
dc.publisherIEEEen_US
dc.relation.haspart8007232.pdfen_US
dc.titleCapacity of Social-Aware Wireless Networks With Directional Antennasen_US
dc.typeArticleen_US
dc.journal.volume65en_US
dc.journal.issue11en_US
Appears in Collections:2017

Files in This Item:
File SizeFormat 
8007232.pdf1.35 MBAdobe PDF
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhida Qinen_US
dc.contributor.authorXiaoying Ganen_US
dc.contributor.authorJingchao Wangen_US
dc.contributor.authorLuoyi Fuen_US
dc.contributor.authorXinbing Wangen_US
dc.date.accessioned2013en_US
dc.date.accessioned2020-04-06T08:02:00Z-
dc.date.available2020-04-06T08:02:00Z-
dc.date.issued2017en_US
dc.identifier.other10.1109/TCOMM.2017.2737982en_US
dc.identifier.urihttp://localhost/handle/Hannan/210830-
dc.description.abstractThe widespread of smart phones has brought new social-aware features to wireless networks. Users prefer to forward traffic to their social contacts in social-aware networks, which is highly different from the traditional uniform traffic pattern. To this end, we analyze a social-aware wireless network, which is modeled by the social contacts between nodes, and explore its impact on network throughput capacity. We present that it can refine social contacts, thus improving the network capacity. Moreover, directional antennas are applied to further enhance the capacity performance, which can reduce the interference brought by other simultaneous communications. We derive the throughput capacity for social-aware networks with single-beam and multi-beam directional antenna, respectively. For single-beam directional antenna, we prove that when wireless networks are dominated by traffics of short-distance social contact, the throughput capacity can be promoted from order of <inline-formula> <tex-math notation="LaTeX">(\Theta ({1}/{\theta ^{2}}n\,\text {log}\,n)^{1/2}) </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">\Theta ({1}/{\theta ^{2} \text {log}\,n}) </tex-math></inline-formula>. In addition, when the beamwidth <inline-formula> <tex-math notation="LaTeX">\theta </tex-math></inline-formula> is at order of <inline-formula> <tex-math notation="LaTeX">\Omega ({1}/{({\log {n}})^{1/2}}) </tex-math></inline-formula>, the throughput capacity is a constant. Thus, the wireless network is scalable. For multi-beam antennas, we prove that when sidelobe gain <inline-formula> <tex-math notation="LaTeX">G_{s} </tex-math></inline-formula> is at order of <inline-formula> <tex-math notation="LaTeX">o(G_{m}) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">G_{m} </tex-math></inline-formula> is main lobe gain, compared with the single-beam case, the network capacity can achieve the order of <inline-formula> <tex-math notation="LaTeX">\Theta ({1}/{\theta ^{2}\text {log}\,n}) </tex-math></inline-formula>.en_US
dc.format.extent4831,en_US
dc.format.extent4844en_US
dc.publisherIEEEen_US
dc.relation.haspart8007232.pdfen_US
dc.titleCapacity of Social-Aware Wireless Networks With Directional Antennasen_US
dc.typeArticleen_US
dc.journal.volume65en_US
dc.journal.issue11en_US
Appears in Collections:2017

Files in This Item:
File SizeFormat 
8007232.pdf1.35 MBAdobe PDF