Please use this identifier to cite or link to this item:
http://localhost/handle/Hannan/716998
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arnaud Marsiglietti|James Melbourne | en_US |
dc.date.accessioned | 2013 | en_US |
dc.date.accessioned | 2021-05-16T17:43:34Z | - |
dc.date.available | 2021-05-16T17:43:34Z | - |
dc.date.issued | en_US | |
dc.identifier.isbn | 0018-9448 | en_US |
dc.identifier.other | 10.1109/TIT.2018.2877741 | en_US |
dc.identifier.uri | http://localhost/handle/Hannan/716998 | - |
dc.description.abstract | Using a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants. | en_US |
dc.relation.haspart | 08502868.pdf | en_US |
dc.subject | Entropy power inequality|Rényi entropy|log-concave | en_US |
dc.title | On the Entropy Power Inequality for the Rényi Entropy of Order [0, 1] | en_US |
dc.title.alternative | IEEE Transactions on Information Theory | en_US |
dc.type | Article | en_US |
dc.journal.volume | Volume | en_US |
dc.journal.issue | Issue | en_US |
dc.journal.title | IEEE Transactions on Information Theory | en_US |
Appears in Collections: | New Ieee 2019 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
08502868.pdf | 256.69 kB | Adobe PDF | ![]() Preview File |
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arnaud Marsiglietti|James Melbourne | en_US |
dc.date.accessioned | 2013 | en_US |
dc.date.accessioned | 2021-05-16T17:43:34Z | - |
dc.date.available | 2021-05-16T17:43:34Z | - |
dc.date.issued | en_US | |
dc.identifier.isbn | 0018-9448 | en_US |
dc.identifier.other | 10.1109/TIT.2018.2877741 | en_US |
dc.identifier.uri | http://localhost/handle/Hannan/716998 | - |
dc.description.abstract | Using a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants. | en_US |
dc.relation.haspart | 08502868.pdf | en_US |
dc.subject | Entropy power inequality|Rényi entropy|log-concave | en_US |
dc.title | On the Entropy Power Inequality for the Rényi Entropy of Order [0, 1] | en_US |
dc.title.alternative | IEEE Transactions on Information Theory | en_US |
dc.type | Article | en_US |
dc.journal.volume | Volume | en_US |
dc.journal.issue | Issue | en_US |
dc.journal.title | IEEE Transactions on Information Theory | en_US |
Appears in Collections: | New Ieee 2019 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
08502868.pdf | 256.69 kB | Adobe PDF | ![]() Preview File |
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arnaud Marsiglietti|James Melbourne | en_US |
dc.date.accessioned | 2013 | en_US |
dc.date.accessioned | 2021-05-16T17:43:34Z | - |
dc.date.available | 2021-05-16T17:43:34Z | - |
dc.date.issued | en_US | |
dc.identifier.isbn | 0018-9448 | en_US |
dc.identifier.other | 10.1109/TIT.2018.2877741 | en_US |
dc.identifier.uri | http://localhost/handle/Hannan/716998 | - |
dc.description.abstract | Using a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants. | en_US |
dc.relation.haspart | 08502868.pdf | en_US |
dc.subject | Entropy power inequality|Rényi entropy|log-concave | en_US |
dc.title | On the Entropy Power Inequality for the Rényi Entropy of Order [0, 1] | en_US |
dc.title.alternative | IEEE Transactions on Information Theory | en_US |
dc.type | Article | en_US |
dc.journal.volume | Volume | en_US |
dc.journal.issue | Issue | en_US |
dc.journal.title | IEEE Transactions on Information Theory | en_US |
Appears in Collections: | New Ieee 2019 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
08502868.pdf | 256.69 kB | Adobe PDF | ![]() Preview File |