Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/716998
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArnaud Marsiglietti|James Melbourneen_US
dc.date.accessioned2013en_US
dc.date.accessioned2021-05-16T17:43:34Z-
dc.date.available2021-05-16T17:43:34Z-
dc.date.issueden_US
dc.identifier.isbn0018-9448en_US
dc.identifier.other10.1109/TIT.2018.2877741en_US
dc.identifier.urihttp://localhost/handle/Hannan/716998-
dc.description.abstractUsing a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants.en_US
dc.relation.haspart08502868.pdfen_US
dc.subjectEntropy power inequality|Rényi entropy|log-concaveen_US
dc.titleOn the Entropy Power Inequality for the Rényi Entropy of Order [0, 1]en_US
dc.title.alternativeIEEE Transactions on Information Theoryen_US
dc.typeArticleen_US
dc.journal.volumeVolumeen_US
dc.journal.issueIssueen_US
dc.journal.titleIEEE Transactions on Information Theoryen_US
Appears in Collections:New Ieee 2019

Files in This Item:
File Description SizeFormat 
08502868.pdf256.69 kBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArnaud Marsiglietti|James Melbourneen_US
dc.date.accessioned2013en_US
dc.date.accessioned2021-05-16T17:43:34Z-
dc.date.available2021-05-16T17:43:34Z-
dc.date.issueden_US
dc.identifier.isbn0018-9448en_US
dc.identifier.other10.1109/TIT.2018.2877741en_US
dc.identifier.urihttp://localhost/handle/Hannan/716998-
dc.description.abstractUsing a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants.en_US
dc.relation.haspart08502868.pdfen_US
dc.subjectEntropy power inequality|Rényi entropy|log-concaveen_US
dc.titleOn the Entropy Power Inequality for the Rényi Entropy of Order [0, 1]en_US
dc.title.alternativeIEEE Transactions on Information Theoryen_US
dc.typeArticleen_US
dc.journal.volumeVolumeen_US
dc.journal.issueIssueen_US
dc.journal.titleIEEE Transactions on Information Theoryen_US
Appears in Collections:New Ieee 2019

Files in This Item:
File Description SizeFormat 
08502868.pdf256.69 kBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArnaud Marsiglietti|James Melbourneen_US
dc.date.accessioned2013en_US
dc.date.accessioned2021-05-16T17:43:34Z-
dc.date.available2021-05-16T17:43:34Z-
dc.date.issueden_US
dc.identifier.isbn0018-9448en_US
dc.identifier.other10.1109/TIT.2018.2877741en_US
dc.identifier.urihttp://localhost/handle/Hannan/716998-
dc.description.abstractUsing a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants.en_US
dc.relation.haspart08502868.pdfen_US
dc.subjectEntropy power inequality|Rényi entropy|log-concaveen_US
dc.titleOn the Entropy Power Inequality for the Rényi Entropy of Order [0, 1]en_US
dc.title.alternativeIEEE Transactions on Information Theoryen_US
dc.typeArticleen_US
dc.journal.volumeVolumeen_US
dc.journal.issueIssueen_US
dc.journal.titleIEEE Transactions on Information Theoryen_US
Appears in Collections:New Ieee 2019

Files in This Item:
File Description SizeFormat 
08502868.pdf256.69 kBAdobe PDFThumbnail
Preview File