Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/716998
Title: On the Entropy Power Inequality for the Rényi Entropy of Order [0, 1]
Other Titles: IEEE Transactions on Information Theory
Authors: Arnaud Marsiglietti|James Melbourne
subject: Entropy power inequality|Rényi entropy|log-concave
Year: -1-Uns- -1
Abstract: Using a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants.
URI: http://localhost/handle/Hannan/716998
ISBN: 0018-9448
volume: Volume
issue: Issue
Appears in Collections:New Ieee 2019

Files in This Item:
File Description SizeFormat 
08502868.pdf256.69 kBAdobe PDFThumbnail
Preview File
Title: On the Entropy Power Inequality for the Rényi Entropy of Order [0, 1]
Other Titles: IEEE Transactions on Information Theory
Authors: Arnaud Marsiglietti|James Melbourne
subject: Entropy power inequality|Rényi entropy|log-concave
Year: -1-Uns- -1
Abstract: Using a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants.
URI: http://localhost/handle/Hannan/716998
ISBN: 0018-9448
volume: Volume
issue: Issue
Appears in Collections:New Ieee 2019

Files in This Item:
File Description SizeFormat 
08502868.pdf256.69 kBAdobe PDFThumbnail
Preview File
Title: On the Entropy Power Inequality for the Rényi Entropy of Order [0, 1]
Other Titles: IEEE Transactions on Information Theory
Authors: Arnaud Marsiglietti|James Melbourne
subject: Entropy power inequality|Rényi entropy|log-concave
Year: -1-Uns- -1
Abstract: Using a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants.
URI: http://localhost/handle/Hannan/716998
ISBN: 0018-9448
volume: Volume
issue: Issue
Appears in Collections:New Ieee 2019

Files in This Item:
File Description SizeFormat 
08502868.pdf256.69 kBAdobe PDFThumbnail
Preview File