Please use this identifier to cite or link to this item:
http://localhost/handle/Hannan/716998
Title: | On the Entropy Power Inequality for the Rényi Entropy of Order [0, 1] |
Other Titles: | IEEE Transactions on Information Theory |
Authors: | Arnaud Marsiglietti|James Melbourne |
subject: | Entropy power inequality|Rényi entropy|log-concave |
Year: | -1-Uns- -1 |
Abstract: | Using a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants. |
URI: | http://localhost/handle/Hannan/716998 |
ISBN: | 0018-9448 |
volume: | Volume |
issue: | Issue |
Appears in Collections: | New Ieee 2019 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
08502868.pdf | 256.69 kB | Adobe PDF | ![]() Preview File |
Title: | On the Entropy Power Inequality for the Rényi Entropy of Order [0, 1] |
Other Titles: | IEEE Transactions on Information Theory |
Authors: | Arnaud Marsiglietti|James Melbourne |
subject: | Entropy power inequality|Rényi entropy|log-concave |
Year: | -1-Uns- -1 |
Abstract: | Using a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants. |
URI: | http://localhost/handle/Hannan/716998 |
ISBN: | 0018-9448 |
volume: | Volume |
issue: | Issue |
Appears in Collections: | New Ieee 2019 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
08502868.pdf | 256.69 kB | Adobe PDF | ![]() Preview File |
Title: | On the Entropy Power Inequality for the Rényi Entropy of Order [0, 1] |
Other Titles: | IEEE Transactions on Information Theory |
Authors: | Arnaud Marsiglietti|James Melbourne |
subject: | Entropy power inequality|Rényi entropy|log-concave |
Year: | -1-Uns- -1 |
Abstract: | Using a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants. |
URI: | http://localhost/handle/Hannan/716998 |
ISBN: | 0018-9448 |
volume: | Volume |
issue: | Issue |
Appears in Collections: | New Ieee 2019 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
08502868.pdf | 256.69 kB | Adobe PDF | ![]() Preview File |