Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/648989
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJie Fengen_US
dc.contributor.authorWei Lien_US
dc.contributor.authorJunxiong Xiaoen_US
dc.contributor.authorJilong Hanen_US
dc.contributor.authorHaitao Lien_US
dc.contributor.authorLiyan Huangen_US
dc.contributor.authorYansheng Zhengen_US
dc.date.accessioned2020-05-20T10:13:37Z-
dc.date.available2020-05-20T10:13:37Z-
dc.date.issued2016en_US
dc.identifier.issn1041-1135en_US
dc.identifier.issn1941-0174en_US
dc.identifier.other10.1109/LPT.2015.2483619en_US
dc.identifier.urihttp://localhost/handle/Hannan/178749en_US
dc.identifier.urihttp://localhost/handle/Hannan/648989-
dc.description.abstractIn this letter, we propose a quasi-quadrature phase shift keying (QPSK) partitioning to replace the conventional QPSK partitioning in the first stage of the carrier phase estimation (CPE) algorithms for 32-QAM optical systems. By using the proposed quasi-QPSK-partitioning method, the ability of the CPE algorithms to track changes of phase is greatly enhanced. For 1-dB SNR penalty at bit error rate of 1E-2, the proposed method can achieve an improvement of 85% in combined linewidth symbol duration product tolerance when compared with the conventional method for single stage. With the help of the fine estimation stages, the maximum tolerable combined linewidth symbol duration product can be up to 5.1E-5.en_US
dc.publisherIEEEen_US
dc.relation.haspart7283555.pdfen_US
dc.subjectquadrature amplitude modulation (QAM)|Coherent optical communication|carrier phase estimation|Viterbi & Viterbi algorithm|quadrature phase shift keying (QPSK) partitioningen_US
dc.titleCarrier Phase Estimation for 32-QAM Optical Systems Using Quasi-QPSK-Partitioning Algorithmen_US
dc.typeArticleen_US
dc.journal.volume28en_US
dc.journal.issue1en_US
dc.journal.titleIEEE Photonics Technology Lettersen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7283555.pdf1.76 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJie Fengen_US
dc.contributor.authorWei Lien_US
dc.contributor.authorJunxiong Xiaoen_US
dc.contributor.authorJilong Hanen_US
dc.contributor.authorHaitao Lien_US
dc.contributor.authorLiyan Huangen_US
dc.contributor.authorYansheng Zhengen_US
dc.date.accessioned2020-05-20T10:13:37Z-
dc.date.available2020-05-20T10:13:37Z-
dc.date.issued2016en_US
dc.identifier.issn1041-1135en_US
dc.identifier.issn1941-0174en_US
dc.identifier.other10.1109/LPT.2015.2483619en_US
dc.identifier.urihttp://localhost/handle/Hannan/178749en_US
dc.identifier.urihttp://localhost/handle/Hannan/648989-
dc.description.abstractIn this letter, we propose a quasi-quadrature phase shift keying (QPSK) partitioning to replace the conventional QPSK partitioning in the first stage of the carrier phase estimation (CPE) algorithms for 32-QAM optical systems. By using the proposed quasi-QPSK-partitioning method, the ability of the CPE algorithms to track changes of phase is greatly enhanced. For 1-dB SNR penalty at bit error rate of 1E-2, the proposed method can achieve an improvement of 85% in combined linewidth symbol duration product tolerance when compared with the conventional method for single stage. With the help of the fine estimation stages, the maximum tolerable combined linewidth symbol duration product can be up to 5.1E-5.en_US
dc.publisherIEEEen_US
dc.relation.haspart7283555.pdfen_US
dc.subjectquadrature amplitude modulation (QAM)|Coherent optical communication|carrier phase estimation|Viterbi & Viterbi algorithm|quadrature phase shift keying (QPSK) partitioningen_US
dc.titleCarrier Phase Estimation for 32-QAM Optical Systems Using Quasi-QPSK-Partitioning Algorithmen_US
dc.typeArticleen_US
dc.journal.volume28en_US
dc.journal.issue1en_US
dc.journal.titleIEEE Photonics Technology Lettersen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7283555.pdf1.76 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJie Fengen_US
dc.contributor.authorWei Lien_US
dc.contributor.authorJunxiong Xiaoen_US
dc.contributor.authorJilong Hanen_US
dc.contributor.authorHaitao Lien_US
dc.contributor.authorLiyan Huangen_US
dc.contributor.authorYansheng Zhengen_US
dc.date.accessioned2020-05-20T10:13:37Z-
dc.date.available2020-05-20T10:13:37Z-
dc.date.issued2016en_US
dc.identifier.issn1041-1135en_US
dc.identifier.issn1941-0174en_US
dc.identifier.other10.1109/LPT.2015.2483619en_US
dc.identifier.urihttp://localhost/handle/Hannan/178749en_US
dc.identifier.urihttp://localhost/handle/Hannan/648989-
dc.description.abstractIn this letter, we propose a quasi-quadrature phase shift keying (QPSK) partitioning to replace the conventional QPSK partitioning in the first stage of the carrier phase estimation (CPE) algorithms for 32-QAM optical systems. By using the proposed quasi-QPSK-partitioning method, the ability of the CPE algorithms to track changes of phase is greatly enhanced. For 1-dB SNR penalty at bit error rate of 1E-2, the proposed method can achieve an improvement of 85% in combined linewidth symbol duration product tolerance when compared with the conventional method for single stage. With the help of the fine estimation stages, the maximum tolerable combined linewidth symbol duration product can be up to 5.1E-5.en_US
dc.publisherIEEEen_US
dc.relation.haspart7283555.pdfen_US
dc.subjectquadrature amplitude modulation (QAM)|Coherent optical communication|carrier phase estimation|Viterbi & Viterbi algorithm|quadrature phase shift keying (QPSK) partitioningen_US
dc.titleCarrier Phase Estimation for 32-QAM Optical Systems Using Quasi-QPSK-Partitioning Algorithmen_US
dc.typeArticleen_US
dc.journal.volume28en_US
dc.journal.issue1en_US
dc.journal.titleIEEE Photonics Technology Lettersen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7283555.pdf1.76 MBAdobe PDFThumbnail
Preview File