Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/602767
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeng Qiuen_US
dc.contributor.authorQunbi Zhugeen_US
dc.contributor.authorWei Wangen_US
dc.contributor.authorMathieu Chagnonen_US
dc.contributor.authorFangyuan Zhangen_US
dc.contributor.authorDavid V. Planten_US
dc.date.accessioned2020-05-20T08:58:22Z-
dc.date.available2020-05-20T08:58:22Z-
dc.date.issued2016en_US
dc.identifier.issn0733-8724en_US
dc.identifier.issn1558-2213en_US
dc.identifier.other10.1109/JLT.2015.2506505en_US
dc.identifier.urihttp://localhost/handle/Hannan/155118en_US
dc.identifier.urihttp://localhost/handle/Hannan/602767-
dc.description.abstractIn this paper, we present a format-transparent carrier phase recovery algorithm for the agile metropolitan optical networks based on an optimized superscalar parallelization structure. The pilot overhead and the buffer size in the superscalar parallelization can be minimized by optimizing the parallelization structure depending on the required laser linewidth tolerance of the system. The trade-off between the laser linewidth tolerance and the reduction of buffer size in the proposed superscalar parallelization is revealed in simulations for 16-QAM, 32-QAM, and 64-QAM, respectively. The results indicate that the buffer size in the superscalar parallelization can be reduced significantly when commercially available external cavity lasers (ECL) are employed for coherent detection in metro links beyond 100 Gb/s. Experiments are further conducted in a single-channel system with ECLs as the transmitter and local oscillator lasers to demonstrate the reduction of the pilot overhead and buffer size using the proposed superscalar parallelization compared with the previous superscalar structures.en_US
dc.publisherIEEEen_US
dc.relation.haspart7348641.pdfen_US
dc.subjectcoherent optical communication|Carrier phase recovery|digital signal processingen_US
dc.titleOptimized Superscalar Parallelization-Based Carrier Phase Recovery for Agile Metro Optical Networksen_US
dc.typeArticleen_US
dc.journal.volume34en_US
dc.journal.issue4en_US
dc.journal.titleJournal of Lightwave Technologyen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7348641.pdf1.59 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeng Qiuen_US
dc.contributor.authorQunbi Zhugeen_US
dc.contributor.authorWei Wangen_US
dc.contributor.authorMathieu Chagnonen_US
dc.contributor.authorFangyuan Zhangen_US
dc.contributor.authorDavid V. Planten_US
dc.date.accessioned2020-05-20T08:58:22Z-
dc.date.available2020-05-20T08:58:22Z-
dc.date.issued2016en_US
dc.identifier.issn0733-8724en_US
dc.identifier.issn1558-2213en_US
dc.identifier.other10.1109/JLT.2015.2506505en_US
dc.identifier.urihttp://localhost/handle/Hannan/155118en_US
dc.identifier.urihttp://localhost/handle/Hannan/602767-
dc.description.abstractIn this paper, we present a format-transparent carrier phase recovery algorithm for the agile metropolitan optical networks based on an optimized superscalar parallelization structure. The pilot overhead and the buffer size in the superscalar parallelization can be minimized by optimizing the parallelization structure depending on the required laser linewidth tolerance of the system. The trade-off between the laser linewidth tolerance and the reduction of buffer size in the proposed superscalar parallelization is revealed in simulations for 16-QAM, 32-QAM, and 64-QAM, respectively. The results indicate that the buffer size in the superscalar parallelization can be reduced significantly when commercially available external cavity lasers (ECL) are employed for coherent detection in metro links beyond 100 Gb/s. Experiments are further conducted in a single-channel system with ECLs as the transmitter and local oscillator lasers to demonstrate the reduction of the pilot overhead and buffer size using the proposed superscalar parallelization compared with the previous superscalar structures.en_US
dc.publisherIEEEen_US
dc.relation.haspart7348641.pdfen_US
dc.subjectcoherent optical communication|Carrier phase recovery|digital signal processingen_US
dc.titleOptimized Superscalar Parallelization-Based Carrier Phase Recovery for Agile Metro Optical Networksen_US
dc.typeArticleen_US
dc.journal.volume34en_US
dc.journal.issue4en_US
dc.journal.titleJournal of Lightwave Technologyen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7348641.pdf1.59 MBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeng Qiuen_US
dc.contributor.authorQunbi Zhugeen_US
dc.contributor.authorWei Wangen_US
dc.contributor.authorMathieu Chagnonen_US
dc.contributor.authorFangyuan Zhangen_US
dc.contributor.authorDavid V. Planten_US
dc.date.accessioned2020-05-20T08:58:22Z-
dc.date.available2020-05-20T08:58:22Z-
dc.date.issued2016en_US
dc.identifier.issn0733-8724en_US
dc.identifier.issn1558-2213en_US
dc.identifier.other10.1109/JLT.2015.2506505en_US
dc.identifier.urihttp://localhost/handle/Hannan/155118en_US
dc.identifier.urihttp://localhost/handle/Hannan/602767-
dc.description.abstractIn this paper, we present a format-transparent carrier phase recovery algorithm for the agile metropolitan optical networks based on an optimized superscalar parallelization structure. The pilot overhead and the buffer size in the superscalar parallelization can be minimized by optimizing the parallelization structure depending on the required laser linewidth tolerance of the system. The trade-off between the laser linewidth tolerance and the reduction of buffer size in the proposed superscalar parallelization is revealed in simulations for 16-QAM, 32-QAM, and 64-QAM, respectively. The results indicate that the buffer size in the superscalar parallelization can be reduced significantly when commercially available external cavity lasers (ECL) are employed for coherent detection in metro links beyond 100 Gb/s. Experiments are further conducted in a single-channel system with ECLs as the transmitter and local oscillator lasers to demonstrate the reduction of the pilot overhead and buffer size using the proposed superscalar parallelization compared with the previous superscalar structures.en_US
dc.publisherIEEEen_US
dc.relation.haspart7348641.pdfen_US
dc.subjectcoherent optical communication|Carrier phase recovery|digital signal processingen_US
dc.titleOptimized Superscalar Parallelization-Based Carrier Phase Recovery for Agile Metro Optical Networksen_US
dc.typeArticleen_US
dc.journal.volume34en_US
dc.journal.issue4en_US
dc.journal.titleJournal of Lightwave Technologyen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7348641.pdf1.59 MBAdobe PDFThumbnail
Preview File