Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/597447
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChengjun Lien_US
dc.contributor.authorWei Guoen_US
dc.contributor.authorWei Wangen_US
dc.contributor.authorWeisheng Huen_US
dc.contributor.authorMing Xiaen_US
dc.date.accessioned2020-05-20T08:51:21Z-
dc.date.available2020-05-20T08:51:21Z-
dc.date.issued2016en_US
dc.identifier.issn1943-0620en_US
dc.identifier.issn1943-0639en_US
dc.identifier.other10.1364/JOCN.8.000835en_US
dc.identifier.urihttp://localhost/handle/Hannan/177490en_US
dc.identifier.urihttp://localhost/handle/Hannan/597447-
dc.description.abstractPassive optical networks (PONs) offer high network capacity and densified coverage at the cost of high capital expenditure. Therefore, it is desirable for network operators who deploy their own infrastructures to share their PON infrastructures to reduce the initial investment. The key problem of PON network sharing is how to balance the trade-off between isolation and utilization of bandwidth resources. In this paper,we introduce a bandwidth resourcesharing framework in XG-PONs (10 gigabit-capable PONs) amongmultiple operators. In this framework, each transmission convergence (TC) frame with fixed time slots (125 μs) is regarded as a bandwidth slice, which is the resource granularity for sharing. Then, we formulate the bandwidth resource-sharing problem and propose slice scheduling schemes to assign bandwidth slices to different operators. Our proposed schemes meet three key requirements of network sharing: isolation, customization, and efficient resource utilization. We study the efficacy of our schemes by employing an event-driven simulator. The results show our schemes could ensure resource isolation across operators andmaximize total resource utilization while providing the flexibility of running different customized algorithms to different operators.en_US
dc.publisherIEEEen_US
dc.relation.haspart7744444.pdfen_US
dc.subjectBandwidth resource sharing; Slice schedulingscheme; Transmission convergence (TC) layer; XG-PON.en_US
dc.titleBandwidth resource sharing on the XGPON transmission convergence layer in a multi-operator scenarioen_US
dc.typeArticleen_US
dc.journal.volume8en_US
dc.journal.issue11en_US
dc.journal.titleIEEE/OSA Journal of Optical Communications and Networkingen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7744444.pdf633.64 kBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChengjun Lien_US
dc.contributor.authorWei Guoen_US
dc.contributor.authorWei Wangen_US
dc.contributor.authorWeisheng Huen_US
dc.contributor.authorMing Xiaen_US
dc.date.accessioned2020-05-20T08:51:21Z-
dc.date.available2020-05-20T08:51:21Z-
dc.date.issued2016en_US
dc.identifier.issn1943-0620en_US
dc.identifier.issn1943-0639en_US
dc.identifier.other10.1364/JOCN.8.000835en_US
dc.identifier.urihttp://localhost/handle/Hannan/177490en_US
dc.identifier.urihttp://localhost/handle/Hannan/597447-
dc.description.abstractPassive optical networks (PONs) offer high network capacity and densified coverage at the cost of high capital expenditure. Therefore, it is desirable for network operators who deploy their own infrastructures to share their PON infrastructures to reduce the initial investment. The key problem of PON network sharing is how to balance the trade-off between isolation and utilization of bandwidth resources. In this paper,we introduce a bandwidth resourcesharing framework in XG-PONs (10 gigabit-capable PONs) amongmultiple operators. In this framework, each transmission convergence (TC) frame with fixed time slots (125 μs) is regarded as a bandwidth slice, which is the resource granularity for sharing. Then, we formulate the bandwidth resource-sharing problem and propose slice scheduling schemes to assign bandwidth slices to different operators. Our proposed schemes meet three key requirements of network sharing: isolation, customization, and efficient resource utilization. We study the efficacy of our schemes by employing an event-driven simulator. The results show our schemes could ensure resource isolation across operators andmaximize total resource utilization while providing the flexibility of running different customized algorithms to different operators.en_US
dc.publisherIEEEen_US
dc.relation.haspart7744444.pdfen_US
dc.subjectBandwidth resource sharing; Slice schedulingscheme; Transmission convergence (TC) layer; XG-PON.en_US
dc.titleBandwidth resource sharing on the XGPON transmission convergence layer in a multi-operator scenarioen_US
dc.typeArticleen_US
dc.journal.volume8en_US
dc.journal.issue11en_US
dc.journal.titleIEEE/OSA Journal of Optical Communications and Networkingen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7744444.pdf633.64 kBAdobe PDFThumbnail
Preview File
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChengjun Lien_US
dc.contributor.authorWei Guoen_US
dc.contributor.authorWei Wangen_US
dc.contributor.authorWeisheng Huen_US
dc.contributor.authorMing Xiaen_US
dc.date.accessioned2020-05-20T08:51:21Z-
dc.date.available2020-05-20T08:51:21Z-
dc.date.issued2016en_US
dc.identifier.issn1943-0620en_US
dc.identifier.issn1943-0639en_US
dc.identifier.other10.1364/JOCN.8.000835en_US
dc.identifier.urihttp://localhost/handle/Hannan/177490en_US
dc.identifier.urihttp://localhost/handle/Hannan/597447-
dc.description.abstractPassive optical networks (PONs) offer high network capacity and densified coverage at the cost of high capital expenditure. Therefore, it is desirable for network operators who deploy their own infrastructures to share their PON infrastructures to reduce the initial investment. The key problem of PON network sharing is how to balance the trade-off between isolation and utilization of bandwidth resources. In this paper,we introduce a bandwidth resourcesharing framework in XG-PONs (10 gigabit-capable PONs) amongmultiple operators. In this framework, each transmission convergence (TC) frame with fixed time slots (125 μs) is regarded as a bandwidth slice, which is the resource granularity for sharing. Then, we formulate the bandwidth resource-sharing problem and propose slice scheduling schemes to assign bandwidth slices to different operators. Our proposed schemes meet three key requirements of network sharing: isolation, customization, and efficient resource utilization. We study the efficacy of our schemes by employing an event-driven simulator. The results show our schemes could ensure resource isolation across operators andmaximize total resource utilization while providing the flexibility of running different customized algorithms to different operators.en_US
dc.publisherIEEEen_US
dc.relation.haspart7744444.pdfen_US
dc.subjectBandwidth resource sharing; Slice schedulingscheme; Transmission convergence (TC) layer; XG-PON.en_US
dc.titleBandwidth resource sharing on the XGPON transmission convergence layer in a multi-operator scenarioen_US
dc.typeArticleen_US
dc.journal.volume8en_US
dc.journal.issue11en_US
dc.journal.titleIEEE/OSA Journal of Optical Communications and Networkingen_US
Appears in Collections:2016

Files in This Item:
File Description SizeFormat 
7744444.pdf633.64 kBAdobe PDFThumbnail
Preview File