Please use this identifier to cite or link to this item: http://dlib.scu.ac.ir/handle/Hannan/523865
Title: Coverage and Rate of Downlink Sequence Transmissions With Reliability Guarantees
Authors: Jihong Park;Petar Popovski
Year: 2017
Publisher: IEEE
Abstract: Real-time distributed control is a promising application of 5G in which communication links should satisfy certain reliability guarantees. In this letter, we derive closed-form maximum average rate when a device (e.g., industrial machine) downloads a sequence of <inline-formula> <tex-math notation="LaTeX"> n </tex-math></inline-formula> operational commands through cellular connection, while guaranteeing a certain signal-to-interference ratio (<inline-formula> <tex-math notation="LaTeX"> {\mathsf {SIR}} </tex-math></inline-formula>) coverage for all <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> messages. The result is based on novel closed-form <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-successive <inline-formula> <tex-math notation="LaTeX"> {\mathsf {SIR}} </tex-math></inline-formula> coverage bounds. The proposed bounds provide simple approximations that are increasingly accurate in the high reliability region.
URI: http://dl.kums.ac.ir/handle/Hannan/523865
volume: 6
issue: 6
More Information: 722,
725
Appears in Collections:2017

Files in This Item:
File Description SizeFormat 
8002612.pdf565.63 kBAdobe PDFThumbnail
Preview File
Title: Coverage and Rate of Downlink Sequence Transmissions With Reliability Guarantees
Authors: Jihong Park;Petar Popovski
Year: 2017
Publisher: IEEE
Abstract: Real-time distributed control is a promising application of 5G in which communication links should satisfy certain reliability guarantees. In this letter, we derive closed-form maximum average rate when a device (e.g., industrial machine) downloads a sequence of <inline-formula> <tex-math notation="LaTeX"> n </tex-math></inline-formula> operational commands through cellular connection, while guaranteeing a certain signal-to-interference ratio (<inline-formula> <tex-math notation="LaTeX"> {\mathsf {SIR}} </tex-math></inline-formula>) coverage for all <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> messages. The result is based on novel closed-form <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-successive <inline-formula> <tex-math notation="LaTeX"> {\mathsf {SIR}} </tex-math></inline-formula> coverage bounds. The proposed bounds provide simple approximations that are increasingly accurate in the high reliability region.
URI: http://dl.kums.ac.ir/handle/Hannan/523865
volume: 6
issue: 6
More Information: 722,
725
Appears in Collections:2017

Files in This Item:
File Description SizeFormat 
8002612.pdf565.63 kBAdobe PDFThumbnail
Preview File
Title: Coverage and Rate of Downlink Sequence Transmissions With Reliability Guarantees
Authors: Jihong Park;Petar Popovski
Year: 2017
Publisher: IEEE
Abstract: Real-time distributed control is a promising application of 5G in which communication links should satisfy certain reliability guarantees. In this letter, we derive closed-form maximum average rate when a device (e.g., industrial machine) downloads a sequence of <inline-formula> <tex-math notation="LaTeX"> n </tex-math></inline-formula> operational commands through cellular connection, while guaranteeing a certain signal-to-interference ratio (<inline-formula> <tex-math notation="LaTeX"> {\mathsf {SIR}} </tex-math></inline-formula>) coverage for all <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> messages. The result is based on novel closed-form <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-successive <inline-formula> <tex-math notation="LaTeX"> {\mathsf {SIR}} </tex-math></inline-formula> coverage bounds. The proposed bounds provide simple approximations that are increasingly accurate in the high reliability region.
URI: http://dl.kums.ac.ir/handle/Hannan/523865
volume: 6
issue: 6
More Information: 722,
725
Appears in Collections:2017

Files in This Item:
File Description SizeFormat 
8002612.pdf565.63 kBAdobe PDFThumbnail
Preview File