Please use this identifier to cite or link to this item: http://localhost/handle/Hannan/225854
Title: Ranking Saliency
Authors: Lihe Zhang;Chuan Yang;Huchuan Lu;Xiang Ruan;Ming-Hsuan Yang
Year: 2017
Publisher: IEEE
Abstract: Most existing bottom-up algorithms measure the foreground saliency of a pixel or region based on its contrast within a local context or the entire image, whereas a few methods focus on segmenting out background regions and thereby salient objects. Instead of only considering the contrast between salient objects and their surrounding regions, we consider both foreground and background cues in this work. We rank the similarity of image elements with foreground or background cues via graph-based manifold ranking. The saliency of image elements is defined based on their relevances to the given seeds or queries. We represent an image as a multi-scale graph with fine superpixels and coarse regions as nodes. These nodes are ranked based on the similarity to background and foreground queries using affinity matrices. Saliency detection is carried out in a cascade scheme to extract background regions and foreground salient objects efficiently. Experimental results demonstrate the proposed method performs well against the state-of-the-art methods in terms of accuracy and speed. We also propose a new benchmark dataset containing 5,168 images for large-scale performance evaluation of saliency detection methods.
URI: http://localhost/handle/Hannan/225854
volume: 39
issue: 9
More Information: 1892,
1904
Appears in Collections:2017

Files in This Item:
File SizeFormat 
7567535.pdf1.88 MBAdobe PDF
Title: Ranking Saliency
Authors: Lihe Zhang;Chuan Yang;Huchuan Lu;Xiang Ruan;Ming-Hsuan Yang
Year: 2017
Publisher: IEEE
Abstract: Most existing bottom-up algorithms measure the foreground saliency of a pixel or region based on its contrast within a local context or the entire image, whereas a few methods focus on segmenting out background regions and thereby salient objects. Instead of only considering the contrast between salient objects and their surrounding regions, we consider both foreground and background cues in this work. We rank the similarity of image elements with foreground or background cues via graph-based manifold ranking. The saliency of image elements is defined based on their relevances to the given seeds or queries. We represent an image as a multi-scale graph with fine superpixels and coarse regions as nodes. These nodes are ranked based on the similarity to background and foreground queries using affinity matrices. Saliency detection is carried out in a cascade scheme to extract background regions and foreground salient objects efficiently. Experimental results demonstrate the proposed method performs well against the state-of-the-art methods in terms of accuracy and speed. We also propose a new benchmark dataset containing 5,168 images for large-scale performance evaluation of saliency detection methods.
URI: http://localhost/handle/Hannan/225854
volume: 39
issue: 9
More Information: 1892,
1904
Appears in Collections:2017

Files in This Item:
File SizeFormat 
7567535.pdf1.88 MBAdobe PDF
Title: Ranking Saliency
Authors: Lihe Zhang;Chuan Yang;Huchuan Lu;Xiang Ruan;Ming-Hsuan Yang
Year: 2017
Publisher: IEEE
Abstract: Most existing bottom-up algorithms measure the foreground saliency of a pixel or region based on its contrast within a local context or the entire image, whereas a few methods focus on segmenting out background regions and thereby salient objects. Instead of only considering the contrast between salient objects and their surrounding regions, we consider both foreground and background cues in this work. We rank the similarity of image elements with foreground or background cues via graph-based manifold ranking. The saliency of image elements is defined based on their relevances to the given seeds or queries. We represent an image as a multi-scale graph with fine superpixels and coarse regions as nodes. These nodes are ranked based on the similarity to background and foreground queries using affinity matrices. Saliency detection is carried out in a cascade scheme to extract background regions and foreground salient objects efficiently. Experimental results demonstrate the proposed method performs well against the state-of-the-art methods in terms of accuracy and speed. We also propose a new benchmark dataset containing 5,168 images for large-scale performance evaluation of saliency detection methods.
URI: http://localhost/handle/Hannan/225854
volume: 39
issue: 9
More Information: 1892,
1904
Appears in Collections:2017

Files in This Item:
File SizeFormat 
7567535.pdf1.88 MBAdobe PDF